

Dermal Exposure Assessment

Jennifer Sahmel, CIH, CSP Senior Health Scientist ChemRisk, Inc. Boulder, CO isahmel@chemrisk.com

What is the Role of the Skin?

- Critical barrier for
 - Preventing microbial invasion
 - Water balance
 - Temperature control

Key Barrier: Stratum Corneum

- Comprised of dead flattened cells
- □ Only ~15 µm thick on most of the body
- In comparison, the typical human hair is 50-70 μm thick and 3M Scotch[©] tape is 25 μm thick
- Palms and soles thicker, ~600 μm

Effects of Dermal Exposures

- Direct effects on skin
 - Mechanical
 - Irritant
 - Allergic
- Systemic toxicity
- Infectious agents
- Systemic sensitization

Incidence of Reported Occupational Illness in FRG Requiring Change of Loss of Occupation by Occupation (cases/100,000)

Barriers to Conducting Dermal Exposure Assessments

- Lack of understanding about exposure hazards by workers and/or safety and health professionals
- Knowledge gaps still exist for dermal exposure assessment methodologies
- Dermal exposure assessment regulations often lack specifics or include unclear requirements

Reasons to Conduct Dermal Exposure Assessments

- OSHA expects and requires it
- There is a lot of great information available to help in assessing dermal exposures
- □ The comprehensive exposure assessment picture for your employees is very incomplete without it
- What you don't know may be hurting your employees

AIHA
Strategy to
Assess and
Manage
Workplace
Exposures

A Recommended Strategy for Dermal Exposure/Risk Assessments

- Basic characterization of dermal hazards
- ☐ Initial dermal exposure assessment and grouping of worker activities
- Exposure acceptability determination
- Control of unacceptable exposures, further information gathering if undetermined, reassessment of acceptable exposures

Step 1: Basic Characterization

- Dermal hazard identification and toxicity assessment
 - Identify agents of concern by reviewing process flow diagrams, ingredients, MSDSs, and professional practice guidelines
 - Evaluate other available hazard data
 - Determine if OSHA, NIOSH, AIHA, or ACGIH has set a Skin Notation, an inhalation OEL, BEI®, or BEEL

Example – MSDS for n-hexane

http://msds.pdc.cornell.edu/msdssrch.asp

Section 3 - Hazards Identification, Including Emergency Overview HEXANE (N-HEXANE) (AMSCO SOLV 1487)

Health Hazards Acute & Chronic: MAY BE AN EYE IRRITANT. MAY CAUSE SKIN IRRITATION UPON PROLONGED OR REPEATED CONTACT. RESPIRATORY TRACT IRRITATION. CENTRAL NERVOUS SYSTEM DEPRESSION IN HIGH CONCENTRATIONS. WEAKENING AND NUMBNESS IN EXTREMITIES.

Signs & Symptoms of Overexposure: N/K

Medical Conditions Aggravated by Exposure: N/K

Route of Entry Indicators:

Inhalation: YES

Skin: YES

Ingestion: YES

Other Sources of Toxicity Information

- SRC's TSCATS Database
 - http://www.syrres.com/esc/tscats.htm
- NIOSH skin topic page
 - http://www.cdc.gov/niosh/topics/skin/
- PubMed searches free NIH archive
 - http://www.pubmedcentral.nih.gov
- EPA Guidance

EPA Dermal Guidance Documents

- Dermal Exposure Assessment Principles (2002)
 - http://www.epa.gov/nceawww1/pdfs/derexp.pdf
- Exposure Factors Handbook (1997)
 - Body surface area studies and activity exposure factor analyses
 - http://cfpub.epa.gov/ncea/cfm/exposfac.cfm?ActType=default
- □ Risk Characterization Handbook (2000)
 - Overview of risk characterization-related products
 - http://epa.gov/osp/spc/rchandbk.pdf

- Worker activities and SEG determination
 - Observe work practices and interaction with substances of concern
 - Do workers have direct contact with dermal hazards via bare skin or gloved hands? Is splashing a risk?
 - Do work practices differ between groups of workers or individual workers?

- Worker activities and SEG determination
 - How are tools shared in the workplace? How are tools cleaned/disinfected?
 - What is the level of workplace housekeeping?
 - What are the environmental conditions in each work area?
 - How frequently do workers wash hands?

- Worker activities and SEG determination
 - Characterize the following five key factors:
 - Dermal contact area on skin surface
 - Dermal concentration transferred to the skin
 - Dermal contact frequency and time of total contact with the skin
 - Dermal retention time on skin following exposure
 - Dermal penetration potential through skin

Dermal Contact Area

- Dermal contact is the total area of likely skin contact if the agent of concern is a systemic toxic
- Skin area is not as significant if the agent is a local toxic/skin toxic/allergen
- Assume no PPE used when estimating
- Are one or two hands used? Is the whole hand affected, or perhaps only the palm?

Skin Surface Areas

Taken from the U.S. EPA's Exposure Factors Handbook, Volume I, Chapter 6: Dermal, Table 6-4, Surface Area by Body Part for Adults, m²

Body Part	Mean (Men)	5th to 95th Percentile
Head	1180 cm ²	900-1610 cm ²
Arms	2280 cm ²	1090-2920 cm ²
Forearms	1140 cm ²	945-1360 cm ²
Hands	840 cm ²	596-1130 cm ²
Palms	150 cm ²	
Thumb	~24 cm ²	

Dermal Concentration

- □ Total concentration by weight of the agent of concern on the skin surface area (can be difficult to estimate)
- For local irritants, concentration will affect severity of reaction and future reactions
- For allergens, concentration will affect the rate of sensitization of the exposed population
- For systemic toxics, concentration will affect penetration rate through the skin

Dermal Contact Frequency

- Dermal Contact Frequency
 - The frequency of contacts or the percentage of the total work shift that the agent of concern comes in contact with the skin
- Consider the length of the task relative to the length of the work shift and the number of repeated contacts with skin

Dermal Retention Time

- Dermal retention time
 - Likelihood that the agent of concern will remain on the skin following exposure contact (for both systemic or local toxics)
- Consider factors such as vapor pressure and particulate characteristics that would make an agent more likely to remain on skin over time

Dermal Penetration Potential

- Dermal penetration potential
 - The mass of actual penetration into the body through both the stratum corneum and the dermis (for systemic toxics)
- Comparatively, <u>dermal absorption</u> is
 - Penetration into or through the stratum corneum ONLY (not necessarily available for systemic absorption)

Dermal Penetration Potential

- Factors affecting dermal penetration or absorption include
 - Octanol-water partition coefficient (Log Ko/w)
 - Contamination of clothing or other covering
 - Kp values (permeability coefficient)
 - Skin washing frequency
 - Skin temperature under gloves

Dermal Penetration: The Bricks and Mortar Model

- Multiple pathways for permeation
 - Fat-soluble (lipophilic) chemicals
 - Water-soluble (hydrophilic) chemicals

Fat Soluble "Mortar"

Protein (Water-Soluble) "Bricks"

Factors Affecting Skin Penetration

- The health or condition of the skin at the time of exposure is very important
- Skin can be damaged in many ways by chemicals or the environment (humidity, temp)
- Physical damage includes scratches, cuts, exposure to cold temperatures
- Chemical damage includes partial or full removal of the stratum corneum or its lipid base

Assessing Skin Penetration Potential Using "Skin" Notations

- OSHA, NIOSH, and ACGIH have all defined "skin notations" for certain chemical substances
- NIOSH is in the process of developing a new, more detailed skin notation
- Purely qualitative
- Of 30,000 chemicals in commercial use, only about 275 have a "skin" notation; many dermal hazards may not carry the notation

Skin Notations

Examples of the ACGIH TLV skin notations

Substance	TWA	STEL/C	Notations	Mol Wgt	TLV Basis
Acrylamide	0.03 mg/m ³	-	Skin; A3	71.08	CNS; dermatitis
N-Hexane	50 ppm	-	Skin; BEI	86.18	Neuropathy, CNS; irritation

Step 3: Screening-Level Exposure Acceptability Determination

Are exposures acceptable, unacceptable, or undetermined?

The use of a qualitative rating scheme specific to dermal exposures may be helpful

Dermal Hazard Rating

Rating	Description
1	Reversible or very low skin or systemic toxicity
2	Moderate but reversible skin or systemic toxicity
3	Irreversible/chronic skin or systemic toxicity or sensitization
4	Life threatening skin or systemic toxicity or sensitization

Dermal Contact Area

Assume the absence of PPE for contact rating

Rating	Description
1	Unexpected/unlikely
2	Very small area of skin contact
3	Contact possible to hands and forearms
4	Contact possible to significant area of skin

Dermal Concentration or Loading

Assume absence of PPE for concentration rating

Rating	Description
1	Negligible concentration of agent likely to contact the skin
2	Low concentration of agent likely to contact the skin
3	Moderate concentration of agent likely to contact the skin
4	High concentration of agent likely to contact the skin

Dermal Contact Frequency

Rating	Description
1	Minimal contact with skin; one or two incidental contacts; contact during less than 5% of work shift
2	Up to 10 incidental contacts with skin; contact during less than 10% of work shift
3	Up to 50 incidental contacts with skin; contact during less than 50% of work shift
4	Routine incidental contact with skin throughout shift; contact during 50-100% of work shift

Dermal Retention Time

Rating	Description
1	Amount transferred unlikely to remain on skin for any period of time (i.e., high volatility, dry and powdery)
2	Amount transferred may remain on skin for some time (i.e., some volatility or adherence to skin)
3	Amount transferred is likely to remain on skin for a significant period of time (i.e., low volatility, high MW, sticky or consolidated on skin even if not visible)
4	Amount transferred very likely to remain on skin (i.e., substance not volatile, MW > 100, substance very likely to stick to skin)

Dermal Penetration Potential

Rating	Description
1	Rare (large, insoluble particles)
2	Less likely (small insoluble particle > 1 micron in size, or both poor lipid solubility and poor water solubility)
3	Possible or slow (very small insoluble particles < 1 micron, or some lipid solubility and some water solubility, or marginal skin health)
4	Probable or likely (good lipid solubility and good water solubility, or poor skin health)

Qualitative Dermal Assessment

- Exposure Rating = Contact Area * Concentration * Contact Frequency * Retention Time * Penetration Potential
 - ER = CA * C * CF * RT * PP
- □ Exp. Rating from 1 to 1024
- Exp. Rating with Hazard Rating yields the priority rating
- Use the following chart to determine low, medium, high, very high priority

Qualitative Assessment of Dermal Exposures

Example: Qualitative Assessment

Determine:

- Dermal hazard rating
- Dermal contact area
- Dermal concentration
- Dermal retention time
- Dermal penetration potential

...for this employee, who works as a brake repair mechanic, using a hexane-based brake cleaner (30% n-hexane)

Make a Qualitative Estimate

- Dermal hazard rating: 3
- Dermal contact area: 3
- Dermal concentration: 3
- Dermal exposure time: 4
- Dermal retention time: 2
- Dermal penetration: 4

Total exposure rating = 288 (by 3 for hazard)

In the RED or very high priority category for exposure.

Further Information Gathering Semi-Quantitative Approaches

- Qualitative assessment approaches are good for screening but may be insufficient
- □ Next option is Step 4 Further Information Gathering
 - Modeling of exposure and/or skin penetration
 - Indirect skin sampling methods
 - Direct skin sampling methods

Dermal Exposure Sampling

Dermal Monitoring: Indirect Methods

- Surface sampling: some standards exist, or can be used qualitatively to determine risk for skin exposure
 - Wipe samples
 - Vacuum samples
 - Colorimetric indicators (aromatic and aliphatic amines, isocyanates, lead, nickel, cadmium, beryllium)

Dermal Monitoring: Indirect Methods

- Biological Monitoring: indication of dermal as well as total body exposure dose
 - Chemical biomarkers (evidence or presence of a chemical in the body)
 - Effect biomarkers (biological or clinical change related to chemical exposure)
- BEIs and BEELs exist to evaluate results
- AIHA's Biological Monitoring Guidelines are available to help develop a program

Dermal Monitoring: Direct Methods

- Interception methods: collection of a contaminant on top of skin or clothing
 - Cotton gauze
 - PUF
 - Ghost wipes
 - Charcoal cloth
- Collection ability and retention must be compared with the skin – may over or under estimate

Dermal Monitoring: Direct Methods

- Removal methods:
 - Washing of skin
 - Wiping of skin
 - Adhesive tape stripping
- Removal will typically be incomplete method differences, migration of contaminant into the skin
- □ Timing is important before contaminant is absorbed into skin but not too early to miss some exposure; not effective for volatiles

Dermal Monitoring: Direct Methods

- In situ Methods: qualitative or quantitative evaluation of actual skin contamination
 - Fluorescent tracers
 - FTIR
 - X-ray fluorescence spectrometry
- Digital imaging software can be used to quantify exposures using fluorescence
- Great training tool for workers
- □ Helpful to determine whole body exposures hands, arms, face, torso, etc.

Step 4 Further Information Gathering

An exposure rating scheme for semiquantitative or quantitative data

Rating	Description
1	Exposure <10% of BEI, BEEL or dermal OEL dose equivalent
2	Exposure 10-50% of BEI, BEEL or dermal OEL dose equivalent
3	Exposure 50-100% of BEI, BEEL or dermal OEL dose equivalent
4	Exposure >100% of BEI, BEEL or dermal OEL dose equivalent

What if you have sampling data?

- Skin surface or biological monitoring data can be evaluated using a mass equivalent of the OEL
 OEL (mg/m³) x 10 m³ air inhaled/day = mg/day
- □ Example: Lead on the surface of hands may be absorbed via ingestion in potentially hazardous amounts
- □ Lead has a TLV/PEL of 50 μg/m³ 50 μg/m³ x 10 m³ = 500 μg/shift

What if you have sampling data?

- Example: Consider an SEG of metal cutting employees who may be exposed to surface paints, oils, hydraulic fluids on scrap metal parts
- □ 14 skin surface samples for lead were taken of the whole hands (840 cm²)
- Dermal sampling data is typically lognormally distributed
- Use IHSTAT for statistical analysis

IHSTAT Analysis of Dermal Data

- Confirmed that sample set was lognormally distributed
- \Box GM = 12.5 µg
- □ SD = 3.2
- □ 95th percentile = 80.9 µg
- \Box UTL = 243.5 µg
- 0.06% of samples above OEL

Logprobability Plot and Least-Squares Best-Fit Line

Statistical Analysis of Dermal Data

- Although OEL not likely to be exceeded through hand exposure alone, it could contribute up to 20% of the OEL allowable dose (using the 95th percentile value conservatively, which was close to 100 μg)
- This could be especially important if air exposures or other exposures are present
- Using the dermal quantitative exposure ranking, this task would most likely be rated a "2" (10-50% of OEL)
 - hazard is rated a "4"

Summary Dermal Risk Assessment

- Seek a balance between estimation, measurement, and management
- When measurement exposure values are not available, use an organized assessment approach to prioritize and classify exposures
- As always, apply the IH hierarchy of controls (i.e., use engineering controls before gloves whenever possible)